THE LEAST AREA PROPERTY OF THE MINIMAL SURFACE DETERMINED BY AN ARBITRARY JORDAN CONTOUR

By JESSE DOUGLAS

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Communicated March 3, 1931

1. In a recent paper¹ the writer gave the first solution of the problem of Plateau for an arbitrary Jordan contour, proving that if Γ is any Jordan curve in *n*-dimensional euclidean space there always exists a minimal surface M

$$x_{i} = RF_{i}(w), \qquad (1.1)$$

$$\sum_{i=1}^{n} F_{i}^{\prime 2}(w) = 0, |w| < 1,$$

bounded by Γ .

If it is possible to span in the contour Γ at least one surface of the topological type of a circular disc having finite area, then the minimal surface M realizes the solution of the least area problem for the contour Γ : the area of M is finite and \leq the area of any continuous surface bounded by Γ .

An example was given² of a Jordan curve within which it is impossible to span any surface whatever of finite area, i.e., the area of every surface bounded by Γ including that of M is $+\infty$. It must not be thought, however, that the least area property of M becomes vacuous in such a case. On the contrary, the purpose of the present note is to show that there is a good sense in which this property continues to hold; this is done in the form of the following theorem.

THEOREM: Every Jordan curve Γ in euclidean space of any number n of dimensions is the boundary of a surface M of the topological type of a circular disc having the following properties:

(a) M is a minimal surface, in the sense of the equations (1.1).

(b) If Γ' denote any continuous closed curve on M and lying altogether in its interior—the image by (1.1) of any Jordan curve C' whose points are all interior to the unit circle—then Γ' intercepts upon M a region whose inner area is finite and \leq the inner area of any other continuous surface bounded by Γ' .

(c) If the entire area of M is finite, this is \leq any other area bounded by Γ . If the area of M is $+\infty$, then the area of every continuous surface bounded by Γ is $+\infty$. The same remarks apply to the area bounded by any continuous closed curve upon M having points in common with Γ .

It thus appears that in the case where M has infinite area the infinite part of the area lies, so to say, altogether on the edge of M.

2. Fundamental in the cited paper was the functional

$$A(g) = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\sum_{i=1}^{2\pi} [g_i(\theta) - g_i(\varphi)]^2}{4 \sin^2 \frac{\theta - \varphi}{2}} d\theta d\varphi_i$$

where the range of the argument g consists of all parametric representations, $x_i = g_i(\theta)$, of the given contour Γ . With respect to this functional all contours divide themselves into two classes: those for which there exists a representation g such that A(g) is finite, and those for which A(g) is identically $+\infty$. Since it was shown that the minimum value of A(g) is equal to the least area bounded by the given contour, we designated these two types as finite-area-spanning and non-finite-area-spanning, respectively. It was shown that any contour of the first type was the boundary of a minimal surface M having the least area bounded by that contour. The minimal surface M bounded by a non-finite-area-spanning contour was then obtained by considering Γ as a limit of polygons.

3. In beginning the proof of the theorem of this paper, we remark that if Γ is any finite-area-spanning contour and Γ_{ρ} is the analytic curve upon M corresponding by the equations (1.1) to the circle C_{ρ} of radius $\rho < 1$ about the origin as center, then Γ_{ρ} must intercept on M a smaller area than on any other continuous surface which it bounds. For if there is a surface of smaller area bounded by Γ_{ρ} , then by replacing the portion of M bounded by Γ_{ρ} by this smaller area we would have a surface of smaller area than M bounded by Γ .

4. Next, let Γ be a non-finite-area-spanning contour, represented as the limit of a sequence of polygons $\Gamma^{(m)}$. We saw in the cited paper that these polygons could be selected so that their representations minimizing A(g),

$$x_i = g_i^{(m)*}(\theta), \qquad (4.1)$$

tended to a representation of Γ ,

$$x_i = g_i^*(\theta), \tag{4.2}$$

which when used in Poisson's integral,

$$x_{i} = RF_{i}(w), \ F_{i}(w) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{i\theta} + w}{e^{i\theta} - w} \ g_{i}^{*}(\theta) d\theta, \qquad (4.3)$$

gave a minimal surface M bounded by Γ . This surface is the limit of the minimal surface $M^{(m)}$ bounded by $\Gamma^{(m)}$, defined by

$$x_{i} = RF_{i}^{(m)}(w), \ F_{i}^{(m)}(w) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{i\theta} + w}{e^{i\theta} - w} \ g_{i}^{(m)*}(\theta) d\theta. \ (4.3_{m})$$

M is the surface of which we assert the properties stated in our main theorem.

Let C_{ρ} be any circle concentric with and smaller than the unit circle and not passing through any singluar point of M; this means that at every point of C_{ρ}

$$\sum_{i=1}^{n} |F'_{i}(w)|^{2} > 0.$$
(4.4)

Let Γ_{ρ} , $\Gamma_{\rho}^{(m)}$ be the analytic curves corresponding to C_{ρ} on M, $M^{(m)}$, respectively; these curves appear in definite topological representation upon C_{ρ} and therefore in definite point-to-point correspondence with one another. The parametric equations of Γ_{ρ} , $\Gamma_{\rho}^{(m)}$ are, respectively,

$$x_i = RF_i(\rho e^{i\theta}) = G_i(\theta), \qquad (4.5)$$

$$x_{i} = RF_{i}^{(m)}(\rho e^{i\theta}) = G_{i}^{(m)}(\theta). \qquad (4.5_{m})$$

We have

$$A(G) = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\sum_{i=1}^{n} [G_{i}(\theta) - G_{i}(\varphi)]^{2}}{4\rho^{2} \sin^{2} \frac{\theta - \varphi}{2}} . \rho d\theta . \rho d\varphi, \quad (4.6)$$

$$A(G^{(m)}) = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\int_{i=1}^{n} [G_{i}^{(m)}(\theta) - G_{i}^{(m)}(\varphi)]^{2}}{4\rho^{2} \sin^{2} \frac{\theta - \varphi}{2}} \cdot \rho d\theta \cdot \rho d\varphi. \quad (4.6_{m})$$

(If we wish, we may consider the differentials of integration as $\rho d\theta$ and $\rho d\varphi$, elements of arc on C_{ρ} .) The integrands take for $\theta = \varphi$ the indeterminate form $\frac{0}{0}$; but it is easy to see that they have, respectively, the limiting values

$$\frac{1}{2}\sum_{i=1}^{n} |F'_{i}(w)|^{2}, \quad \frac{1}{2}\sum_{i=1}^{n} |F^{(m)}_{i}(w)|^{2}, \quad (4.7)$$

for $\theta = \varphi(w = \rho e^{i\theta})$. One has only to interpret the integrand in (4.6) ((4.6_m)) as the square of the chord of $\Gamma_{\rho}(\Gamma_{\rho}^{(m)})$ divided by the square of the corresponding chord of C_{ρ} . The limit in question is evidently the square of the modulus of the conformal transformation from the circular disc to the minimal surface, and that is (4.7).

Let I denote the integrand of (4.6); with the definition (4.7) for $\theta = \varphi$, I is finite and continuous, therefore bounded, on the entire torus (θ, φ) . It follows that A(G), equal to the area of M_{ρ} , the region of M bounded by Γ_{ρ} , is finite.³ (From the appraisal (4.10) below, which applies to I as well as I_m , it may be seen that the area of M_{ρ} is of the order of $(1 - \rho)^{-4}$.) Let 2λ be the minimum value of $\frac{1}{2} \sum_{i=1}^{n} |F'_{i}(w)|^{2}$ on C_{ρ} ; by (4.4), $2\lambda > 0$. By continuity, I stays greater than λ for values of (θ, φ) near enough to the diagonal $\theta = \varphi$ of the torus (θ, φ) :

$$I > \lambda \text{ for } |\theta - \varphi| < \alpha.$$
 (4.8)

We next prove that the integrand I_m of (4.6_m) stays uniformly bounded in θ , φ and m. Evidently, from (4.5_m) and (4.6_m) ,

$$I_{m} \leq \frac{\sum_{i=1}^{n} \left| F_{i}^{(m)}(\rho e^{i\theta}) - F_{i}^{(m)}(\rho e^{i\varphi}) \right|^{2}}{4\rho^{2} \sin^{2} \frac{\theta - \varphi}{2}}.$$
(4.9)

From (4.4),

$$F_i^{(m)}(\rho e^{i\theta}) - F_i^{(m)}(\rho e^{i\varphi}) = \frac{1}{\pi} \int_0^{2\pi} \frac{e^{i\omega}(\rho e^{i\theta} - \rho e^{i\varphi})}{(e^{i\omega} - \rho e^{i\theta})(e^{i\omega} - \rho e^{i\varphi})} g_i^{(m)*}(\omega) d\omega,$$

whence

$$\frac{\left|F_{i}^{(m)}(\rho e^{i\theta}) - F_{i}^{(m)}(\rho e^{i\varphi})\right|}{2\rho\sin\frac{\theta-\varphi}{2}} = \left|\frac{1}{\pi}\int_{0}^{2\pi}\frac{e^{i\omega}}{(e^{i\omega}-\rho e^{i\theta})(e^{i\omega}-\rho e^{i\varphi})}g_{i}^{(m)*}(\omega)d\omega\right|$$

since

$$\left|\rho e^{i\theta}-\rho e^{i\varphi}\right|=2\rho\sin\frac{\theta-\varphi}{2}.$$

Obviously all the contours $\Gamma^{(m)}$ can be comprised in a cube of edge 2R with center at the origin; therefore

$$\frac{\left|F_{i}^{(m)}(\rho e^{i\theta})-F_{i}^{(m)}(\rho e^{i\varphi})\right|}{2\rho\sin\frac{\theta-\varphi}{2}}\leq\frac{2R}{(1-\rho)^{2}},$$

and consequently, by (4.9),

$$I_m \leq \frac{4nR^2}{(1-\rho)^4}.$$
 (4.10)

Since I_m thus stays uniformly bounded as it approaches to I, it follows that

$$\lim_{m \to \infty} A(G^{(m)}) = A(G).$$
(4.11)

By (4.8) and (4.10) we have that

Vol. 17, 1931

$$\frac{I_m}{I} < B \text{ for } 0 < |\theta - \varphi| < \alpha, \qquad (4.12)$$

B and α being independent of m.

The above is preliminary to the proof of the assertion that A(G) is the least value of the A-functional for the contour Γ_{ρ} . Suppose, on the contrary, that G^* is a parametric representation of Γ_{ρ} such that

$$A(G^*) < A(G).$$
 (4.13)

 G^* is derivable from G by a parameter transformation on Γ_{ρ} ; let $G^{(m)*}$ be the representation of $\Gamma_{\rho}^{(m)}$ derived from $G^{(m)}$ by the same parameter transformation. The quotient $\frac{I_m}{I}$ in (4.12) is evidently the ratio of the squares of corresponding chords of $\Gamma_{\rho}^{(m)}$ and Γ_{ρ} , and corresponding chords remain such after the same parameter transformation is effected on both contours. It follows that, in an obvious notation,

$$\frac{I_m^*}{I^*} = \frac{I_m}{I} < B \text{ for } 0 < |\theta - \varphi| < \alpha, \qquad (4.14)$$

B and α being the same as in (4.12).

Now A(G) being finite, so also is $A(G^*)$, and therefore

$$A_{\epsilon}(G^{*}) = \frac{1}{4\pi} \int \int_{T_{\epsilon}} I^{*} \cdot \rho d\theta \cdot \rho d\varphi \qquad (4.15)$$

—where T_{ϵ} is the domain (θ, φ) where $|\theta - \varphi| \ge \epsilon$ —converges to the finite limit $A(G^*)$ for $\epsilon \longrightarrow 0$. It follows by (4.14) that

$$A_{\epsilon}(G^{(m)^*}) = \frac{1}{4\pi} \int \int_{T_{\epsilon}} I_{m}^* \rho d\theta \, \rho d\varphi \qquad (4.16)$$

converges uniformly to $A(G^{(m)*})$ for $\epsilon \longrightarrow 0$.

Now since I_m^* stays uniformly bounded on T_{ϵ} in θ , φ and m, in fact

$$I_m^* \leq \frac{4nR^2}{4\rho^2 \sin^2 \frac{\epsilon}{2}},$$

and furthermore

$$\lim_{m\to\infty}I_m^*=I^*,$$

we have

$$\lim_{m\to\infty}A_{\epsilon}(G^{(m)*}) = A_{\epsilon}(G^*);$$

hence

$$\lim_{\epsilon \to 0} \lim_{m \to \infty} A_{\epsilon}(G^{(m)*}) = \lim_{\epsilon \to 0} A_{\epsilon}(G^*).$$
(4.17)

On account of the uniformity of approach of $A_{\epsilon}(G^{(m)*})$ to $A(G^{(m)*})$ when $\epsilon \rightarrow 0$, it is permissible by a well-known mode of reasoning to interchange the order of the limiting processes on the left of (4.17), and we find

$$\lim_{m \to \infty} A(G^{(m)^*}) = A(G^*).$$
(4.18)

By combining the relations (4.11), (4.13) and (4.18), we see readily that for sufficiently large values of m

$$A(G^{(m)*}) < A(G^{(m)}); (4.19)$$

but this contradicts the fact, proved in §3, that $A(G^{(m)})$ is the minimum value of the A-functional for $\Gamma_{\rho}^{(m)}$, this being the same as the minimum area bounded by $\Gamma_{\rho}^{(m)}$.³

From the fact, now proved, that A(G) is the minimum value of the *A*-functional for the contour Γ_{ρ} , it follows by the relations between the *A*-functional and area³ that the area of $M_{\rho} \leq that$ of any other continuous surface bounded by Γ_{ρ} .

5. Let now Γ' denote an arbitrary continuous closed curve in the interior of M, the image of any Jordan curve C' in the interior of the circular disc |w| < 1. On account of the fact that the singular points of M, where

$$\sum_{i=1}^{n} |F'_{i}(w)|^{2} = 0,$$

have no point of condensation in the interior of |w| < 1, we can construct with the origin as center a circle C_{ρ} of radius $\rho < 1$ having on its circumference no singular points and containing C' in its interior.

Denote by M' the region of M_{ρ} interior to Γ' ; if M' is not the surface of least area bounded by Γ' , let ${M'}^*$ be this surface, whose existence is assured by the writer's earlier paper. Then by replacing M' by ${M'}^*$ we would have a surface bounded by Γ_{ρ} with an area less than that of M_{ρ} , which is contrary to the result stated at the end of §4.

¹ "Solution of the Problem of Plateau," Trans. Amer. Math. Soc., 33, No. 1 (Jan., 1931), pp. 263-321.

² Loc. cit., §27.

³ For the relations between the A-functional and area see the cited paper, §§ 22-26.

216