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1. In a recent paper' the writer gave the first solution of the problem
of Plateau for an arbitrary Jordan contour, proving that if r is any Jordan
curve in n-dimensional euclidean space there always exists a minimal
surface M

xi = RF,(w), (1.1)

E2 F2(w) = 0, Iw I < 1,

bounded by r.
If it is possible to span in the contour r at least one surface of the topo-

logical type of a circular disc having finite area, then the minimal surface
M realizes the solution of the least area problem for the contour r: the
area of M is finite and - the area of any continuous surface bounded by r.
An example was given2 of a Jordan curve within which it is impossible

to span any surface whatever of finite area, i.e., the area of every surface
bounded by r including that of M is + co. It must not be thought, how-
ever, that the least area property of M becomes vacuous in such a case.
On the contrary, the purpose of the present note is to show that there is-
a good sense in which this property continues to hold; this is done in
the form of the following theorem.
THmoREM: Every Jordan curve r in euclidean space of any number n of

dimensions is the boundary of a surface M of the topological type of a circular
disc having the folloning properties:

(a) M is a minimal surface, in the sense of the equations (1.1).
(b) If r1 denote any continuous closed curve on M and lying altogether

in its interior-the image by (1.1) of any Jordan curve C' whose points are
all interior to the unit circle-then rI intercepts upon M a region whose
inner area is finite and < the inner area of any other continuous surface
bounded by r'.

(c) If the entire area of M is finite, this is - any other area bounded
by r. If the area of M is + c, then the area of every continuous surface
bounded by r is + c. The same remarks apply to the area bounded by any
continuous closed curve upon M having points in common with r.

It thus appears that in the case where M has infinite area the infinite
part of the area lies, so to say, altogether on the edge of M.
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2. Fundamental in the cited paper was the functional

21 r [gi(O) - g,(p)12
A(g) f= 2 O4~ dO dqp,X J 4 sin2 -° sow

2

where the range of the argument g consists of all parametric representations,
Xi = gi(0), of the given contour r. With respect to this functional all
contours divide themselves into two classes: those for which there exists
a representation g such that A(g) is finite, and those for which A(g) is
identically + co. Since it was shown that the minimum value of A (g) is
equal to the least area bounded by the given contour, we designated these
two types as finite-area-spanning and non-finite-area-spanning, respec-
tively. It was shown that any contour of the first type was the boundary
of a minimal surface M having the least area bounded by that contour.
The minimal surface M bounded by a non-finite-area-spanning contour
was then obtained by considering r as a limit of polygons.

3. In beginning the proof of the theorem of this paper, we remark that
if r is any finite-area-spanning contour and rp, is the analytic curve upon
M corresponding by the equations (1.1) to the circle C. of radius p < 1
about the origin as center, then rp must intercept on M a smaller area
than on any other continuous surface which it bounds. For if there is
a surface of smaller area bounded by rp, then by replacing the portion
ofM bounded by rp by this smaller area we would have a surface of smaller
area than M bounded by I.

4. Next, let r be a non-finite-area-spanning contour, represented as
the limit of a sequence of polygons r"(). We saw in the cited paper that
these polygons could be selected so that their representations minimizing
A(g),

Xi = gim)*(O) (4.1)

tended to a representation of r,

xi= gi(0)P (4.2)

which when used in Poisson's integral,

1 f2Teie+w*
Xi = RFi(w), Fi(w) = Jo ei_ gi (O)dO, (4.3)

gave a minimal surface M bounded by r. This surface is the limit of the
minimal surface M(m) bounded by r(m), defined by

X=R )2(w12Tei + w (m)*
x = RFfm)(w), Fj(m)(w) = - - g (O)dO. (4.3m)
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M is the surface of which we assert the properties stated in our main
theorem.

Let Cp be any circle concentric with and smaller than the unit circle
and not passing through any singluar point of M; this means that at
every point of C,

Z F'(w)12 > o. (4.4)

Let rp, rpm) be the analytic curves corresponding to Cp on M, M(M), re-
spectively; these curves appear in definite topological representation
upon Cp and therefore in definite point-to-point correspondence with one
another. The parametric equations of rF, rpm) are, respectively,

xi = RFi(pe") = Gi(O), (4.5)

Xi = RFi(m)(peie) = Gi(m)(0). (4.5m)
We have

1 f2f 2r Z [G,(6) -G,()]2
A(G) = oo 42sn pdO. pdq,, (4.6)Jo J 4p2 sin2 2 (P

2

1 [c(2or2r [G(^ () - G(M)Q((p)]2A(G(m)) = ii .pdGJ.pdp. (4.6m)
4r ~~~4p2 sin2 2

(

(If we wish, we may consider the differentials of integration as pdO and
pd(p, elements of arc on C,.) The integrands take for 0 = sp the inde-

terminate form 0; but it is easy to see that they have, respectively, the

limiting values

IF,
n

W 12 nF('W)1 47

2 j=1
t() 2 2 Ei=1 mt()1

for 0 = v(w = pei6). One has only to interpret the integrand in (4.6)
((4.6m)) as the square of the chord of rT,(FPm)) divided by the square of
the corresponding chord of Cp. The limit in question is evidently the
square of the modulus of the conformal transformation from the circular
disc to the minimal surface, and that is (4.7).
Let I denote the integrand of (4.6); with the definition (4.7) for 0 =

I is finite and continuous, therefore bounded, on the entire torus (0, 4).
It follows that A (G), equal to the area of Mp, the region of M bounded by
rpF, is finite.3 (From the appraisal (4.10) below, which applies to I as
well as Im, it may be seen that the area of Mp is of the order of (1 - p)-4.)
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1 n

Let 2X be the minimum value of 4 E F(w) 12 on Cp; by (4.4),

2X> 0. By continuity, I stays greater than X for values of (0, sp) near
enough to the diagonal 0 = s of the torus (0, p):

I > X for I o- o < a. (4.8)

We next prove that the integrand Im of (4.6m) stays uniformly bounded
in 0, s and m. Evidently, from (4.5m) and (4.6m),

I Im) (peOI) - F(m) (peWf) 12
Im < j= 1 .(409)

4p2 sin2 2

From (4.4),

Fim) (pe )- F(m)(pei4) 1 (2 ew(pee?- pewv)\pe/~\pe -~ Jo(ew pei0) (ezw pe"")
whence

| (m)(pe"o) - Fi(m)(pe"')i 1 f2_r_i_
0- 1= _M__ _ _ _d_ _

2p sin 2r Jo(ei -pete)(e"O - pev) gm)*(w)dw|2

since

pe9- pevI = 2p sin 2

Obviously all the contours r(m) can be comprised in a cube of edge 2R
with center at the origin; therefore

iF() (pe'0) - Fm) (pee") I 2R

2p sin0 2 p)

and consequently, by (4.9),

Im s 4nR2 (4.10)

Since Im thus stays uniformly bounded as it approaches to I, it follows
that

lim A(G(m)) = A(G). (4.11)
m+.

By (4.8) and (4.10) we have that
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I <BforO < 10-o p1 < a, (4.12)

B and a being independent of m.
The above is preliminary to the proof of the assertion that A(G) is

the least value of the A-functional for the contour rp. Suppose, on the con-
trary, that G* is a parametric representation of r, such that

A(G*) <A(G). (4.13)

G* is derivable from G by a parameter transformation on rp; let G(m)*
be the representation of rpm) derived from G(m) by the same parameter

transformation. The quotient in (4.12) is evidently the ratio of the

squares of corresponding chords of rFm) and r,,, and corresponding chords
remain such after the same parameter transformation is effected on both
contours. It follows that, in an obvious notation,

I* =fIm < B for O< o- |p < a, (4.14)

B and a being the same as in (4.12).
Now A (G) being finite, so also is A (G*), and therefore

Ae(G ) = I*ffdO..pd'p (4.15)

-where T. is the domain (0, sp) where - eo_ e-converges to the
finite limit A (G*) for e O0. It follows by (4.14) that

A4 (G(m)*) - 1f Im*.pdO.pd'p (4.16)

converges uniformly to A (G'm)*) for e- >0.
Now since 1, stays uniformly bounded on T,, in 0, 'p and m, in fact

I* < 4nR1
4p2 sin2

and furthermore
lim IM =*,

we have
lim A,(G(m)*) - Ae(G*);
m-> co
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hence
ln rlim AE(G(m)*) = lim A,(G*). (4.17)
f> 0 m-.> e+-0

On account of the uniformity of approach of AE(G(m)*) to A(G(m)*) when
e : 0, it is permissible by a well-known mode of reasoning to inter-
change the order of the limiting processes on the left of (4.17), and we find

lim A(G(m)*) = A(G*). (4.18)

By combining the relations (4.11), (4.13) and (4.18), we see readily
that for sufficiently large values of m

A(G(m)*) < A(G(m)); (4.19)

but this contradicts the fact, proved in §3, that A (G(m)) is the minimum
value of the A-functional for rpm), this being the same as the minimum
area bounded by rp(m).3
From the fact, now proved, that A (G) is the minimum value of the

A-functional for the contour rp, it follows by the relations between the
A-functional and area3 that the area of Mp < that of any other continuous
surface bounded by rp.

5. Let now r' denote an arbitrary continuous closed curve in the
interior of M, the image of any Jordan curve C' in the interior of the
circular disc w < 1. On account of the fact that the singular points of
M, where

EjF,'(w) 2 = 0,
i=l

have no point of condensation in the interior of w < 1, we can construct
with the origin as center a circle Cp of radius p < 1 having on its circum-
ference no singular points and containing C' in its interior.

Denote by M' the region of M, interior to rF; if M' is not the surface
of least area bounded by r1, let M'* be this surface, whose existence is
assured by the writer's earlier paper. Then by replacing M' by M'* we
would have a surface bounded by rF with an area less than that of Mp,
which is contrary to the result stated at the end of §4.

1 "Solution of the Problem of Plateau," Trans. Amer. Math. Soc., 33, No. 1 (Jan.,
1931), pp. 263-321.

2 Loc. cit., §27.
3 For the relations between the A-functional and area see the cited paper, §§ 22-26.
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