THE LEAST AREA PROPERTY OF THE MINIMAL SURFACE DETERMINED BY AN ARBITRARY JORDAN CONTOUR

By Jesse Douglas

Department of Mathematics, Massachusetts Institute of Technology
Communicated March 3, 1931

1. In a recent paper ${ }^{1}$ the writer gave the first solution of the problem of Plateau for an arbitrary Jordan contour, proving that if Γ is any Jordan curve in n-dimensional euclidean space there always exists a minimal surface M

$$
\begin{align*}
x_{i} & =R F_{i}(w), \tag{1.1}\\
\sum_{i=1}^{n} F_{i}^{\prime 2}(w) & =0,|w|<1,
\end{align*}
$$

bounded by Γ.
If it is possible to span in the contour Γ at least one surface of the topological type of a circular disc having finite area, then the minimal surface M realizes the solution of the least area problem for the contour Γ : the area of M is finite and \leqq the area of any continuous surface bounded by Γ.

An example was given ${ }^{2}$ of a Jordan curve within which it is impossible to span any surface whatever of finite area, i.e., the area of every surface bounded by Γ including that of M is $+\infty$. It must not be thought, however, that the least area property of M becomes vacuous in such a case. On the contrary, the purpose of the present note is to show that there is a good sense in which this property continues to hold; this is done in the form of the following theorem.

Theorem: Every Jordan curve Γ in euclidean space of any number n of dimensions is the boundary of a surface M of the topological type of a circular disc having the following properties:
(a) M is a minimal surface, in the sense of the equations (1.1).
(b) If Γ^{\prime} denote any continuous closed curve on M and lying altogether in its interior-the image by (1.1) of any Jordan curve C^{\prime} whose points are all interior to the unit circle-then Γ^{\prime} intercepts upon M a region whose inner area is finite and \leqq the inner area of any other continuous surface bounded by Γ^{\prime}.
(c) If the entire area of M is finite, this is \leqq any other area bounded by Γ. If the area of M is $+\infty$, then the area of every continuous surface bounded by Γ is $+\infty$. The same remarks apply to the area bounded by any continuous closed curve upon M having points in common with Γ.

It thus appears that in the case where M has infinite area the infinite part of the area lies, so to say, altogether on the edge of M.
2. Fundamental in the cited paper was the functional

$$
A(g)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\sum_{i=1}^{n}\left[g_{i}(\theta)-g_{i}(\varphi)\right]^{2}}{4 \sin ^{2} \frac{\theta-\varphi}{2}} d \theta d \varphi
$$

where the range of the argument g consists of all parametric representations, $x_{i}=g_{i}(\theta)$, of the given contour Γ. With respect to this functional all contours divide themselves into two classes: those for which there exists a representation g such that $A(g)$ is finite, and those for which $A(g)$ is identically $+\infty$. Since it was shown that the minimum value of $A(g)$ is equal to the least area bounded by the given contour, we designated these two types as finite-area-spanning and non-finite-area-spanning, respectively. It was shown that any contour of the first type was the boundary of a minimal surface M having the least area bounded by that contour. The minimal surface M bounded by a non-finite-area-spanning contour was then obtained by considering Γ as a limit of polygons.
3. In beginning the proof of the theorem of this paper, we remark that if Γ is any finite-area-spanning contour and Γ_{ρ} is the analytic curve upon M corresponding by the equations (1.1) to the circle C_{ρ} of radius $\rho<1$ about the origin as center, then Γ_{ρ} must intercept on M a smaller area than on any other continuous surface which it bounds. For if there is a surface of smaller area bounded by Γ_{ρ}, then by replacing the portion of M bounded by Γ_{ρ} by this smaller area we would have a surface of smaller area than M bounded by Γ.
4. Next, let Γ be a non-finite-area-spanning contour, represented as the limit of a sequence of polygons $\Gamma^{(m)}$. We saw in the cited paper that these polygons could be selected so that their representations minimizing $A(g)$,

$$
\begin{equation*}
x_{i}=g_{i}^{(m)^{*}}(\theta) \tag{4.1}
\end{equation*}
$$

tended to a representation of Γ,

$$
\begin{equation*}
x_{i}=g_{i}^{*}(\theta) \tag{4.2}
\end{equation*}
$$

which when used in Poisson's integral,

$$
\begin{equation*}
x_{i}=R F_{i}(w), F_{i}(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \theta}+w}{e^{i \theta}-w} g_{i}^{*}(\theta) d \theta, \tag{4.3}
\end{equation*}
$$

gave a minimal surface M bounded by Γ. This surface is the limit of the minimal surface $M^{(m)}$ bounded by $\Gamma^{(m)}$, defined by

$$
\begin{equation*}
x_{i}=R F_{i}^{(m)}(w), F_{i}^{(m)}(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \theta}+w}{e^{i \theta}-w} g_{i}^{(m)^{*}}(\theta) d \theta \tag{m}
\end{equation*}
$$

M is the surface of which we assert the properties stated in our main theorem.

Let C_{ρ} be any circle concentric with and smaller than the unit circle and not passing through any singluar point of M; this means that at every point of C_{ρ}

$$
\begin{equation*}
\sum_{i=1}^{n}\left|F_{i}^{\prime}(w)\right|^{2}>0 . \tag{4.4}
\end{equation*}
$$

Let $\Gamma_{\rho}, \Gamma_{\rho}^{(m)}$ be the analytic curves corresponding to C_{ρ} on $M, M^{(m)}$, respectively; these curves appear in definite topological representation upon C_{ρ} and therefore in definite point-to-point correspondence with one another. The parametric equations of $\Gamma_{\rho}, \Gamma_{\rho}^{(m)}$ are, respectively,

$$
\begin{align*}
x_{i}=R F_{i}\left(\rho e^{i \theta}\right) & =G_{i}(\theta) \tag{4.5}\\
x_{i}=R F_{i}^{(m)}\left(\rho e^{i \theta}\right) & =G_{i}^{(m)}(\theta) \tag{m}
\end{align*}
$$

We have

$$
\begin{gather*}
A(G)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\sum_{i=1}^{n}\left[G_{i}(\theta)-G_{i}(\varphi)\right]^{2}}{4 \rho^{2} \sin ^{2} \frac{\theta-\varphi}{2}} . \rho d \theta . \rho d \varphi \tag{4.6}\\
A\left(G^{(m)}\right)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\sum_{i=1}^{n}\left[G_{i}^{(m)}(\theta)-G_{i}^{(m)}(\varphi)\right]^{2}}{4 \rho^{2} \sin ^{2} \frac{\theta-\varphi}{2}} . \rho d \theta . \rho d \varphi . \tag{m}
\end{gather*}
$$

(If we wish, we may consider the differentials of integration as $\rho d \theta$ and $\rho d \varphi$, elements of arc on C_{ρ}.) The integrands take for $\theta=\varphi$ the indeterminate form $\frac{0}{\mathbf{0}}$; but it is easy to see that they have, respectively, the limiting values

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{n}\left|F_{i}^{\prime}(w)\right|^{2}, \quad \frac{1}{2} \sum_{i=1}^{n}\left|F_{i}^{(m)^{\prime}}(w)\right|^{2}, \tag{4.7}
\end{equation*}
$$

for $\theta=\varphi\left(w=\rho e^{i \theta}\right)$. One has only to interpret the integrand in (4.6) $\left(\left(4.6_{m}\right)\right)$ as the square of the chord of $\Gamma_{\rho}\left(\Gamma_{\rho}^{(m)}\right)$ divided by the square of the corresponding chord of C_{ρ}. The limit in question is evidently the square of the modulus of the conformal transformation from the circular dise to the minimal surface, and that is (4.7).
Let I denote the integrand of (4.6); with the definition (4.7) for $\theta=\varphi$, I is finite and continuous, therefore bounded, on the entire torus (θ, φ). It follows that $A(G)$, equal to the area of M_{ρ}, the region of M bounded by Γ_{ρ}, is finite. ${ }^{3}$ (From the appraisal (4.10) below, which applies to I as well as I_{m}, it may be seen that the area of M_{ρ} is of the order of $(1-\rho)^{-4}$.)

Let 2λ be the minimum value of $\frac{1}{2} \sum_{i=1}^{n}\left|F_{i}^{\prime}(w)\right|^{2}$ on C_{ρ}; by (4.4), $2 \lambda>0$. By continuity, I stays greater than λ for values of (θ, φ) near enough to the diagonal $\theta=\varphi$ of the torus (θ, φ) :

$$
\begin{equation*}
I>\lambda \text { for }|\theta-\varphi|<\alpha \tag{4.8}
\end{equation*}
$$

We next prove that the integrand I_{m} of (4.6 6_{m}) stays uniformly bounded in θ, φ and m. Evidently, from (4.5m) and (4.6m),

$$
\begin{equation*}
I_{m} \leqq \frac{\sum_{i=1}^{n}\left|F_{i}^{(m)}\left(\rho e^{i \theta}\right)-F_{i}^{(m)}\left(\rho e^{i \varphi}\right)\right|^{2}}{4 \rho^{2} \sin ^{2} \frac{\theta-\varphi}{2}} \tag{4.9}
\end{equation*}
$$

From (4.4),

$$
F_{i}^{(m)}\left(\rho e^{i \theta}\right)-F_{i}^{(m)}\left(\rho e^{i \varphi}\right)=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{e^{i \omega}\left(\rho e^{i \theta}-\rho e^{i \varphi}\right)}{\left(e^{i \omega}-\rho e^{i \theta}\right)\left(e^{i \omega}-\rho e^{i \varphi}\right)} g_{i}^{(m)^{*}}(\omega) d \omega
$$

whence

$$
\frac{\left|F_{i}^{(m)}\left(\rho e^{i \theta}\right)-F_{i}^{(m)}\left(\rho e^{i \varphi}\right)\right|}{2 \rho \sin \frac{\theta-\varphi}{2}}=\left|\frac{1}{\pi} \int_{0}^{2 \pi} \frac{e^{i \omega}}{\left(e^{i \omega}-\rho e^{i \theta}\right)\left(e^{i \omega}-\rho e^{i \varphi}\right)} g_{i}^{(m)^{*}}(\omega) d \omega\right|
$$

since

$$
\left|\rho e^{i \theta}-\rho e^{i \varphi}\right|=2 \rho \sin \frac{\theta-\varphi}{2}
$$

Obviously all the contours $\Gamma^{(m)}$ can be comprised in a cube of edge $2 R$ with center at the origin; therefore

$$
\frac{\left|F_{i}^{(m)}\left(\rho e^{i \theta}\right)-F_{i}^{(m)}\left(\rho e^{i \varphi}\right)\right|}{2 \rho \sin \frac{\theta-\varphi}{2}} \leqq \frac{2 R}{(1-\rho)^{2}}
$$

and consequently, by (4.9),

$$
\begin{equation*}
I_{m} \leqq \frac{4 n R^{2}}{(1-\rho)^{4}} \tag{4.10}
\end{equation*}
$$

Since I_{m} thus stays uniformly bounded as it approaches to I, it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} A\left(G^{(m)}\right)=A(G) \tag{4.11}
\end{equation*}
$$

By (4.8) and (4.10) we have that

$$
\begin{equation*}
\frac{I_{m}}{I}<B \text { for } 0<|\theta-\varphi|<\alpha \tag{4.12}
\end{equation*}
$$

B and α being independent of m.
The above is preliminary to the proof of the assertion that $A(G)$ is the least value of the A-functional for the contour Γ_{ρ}. Suppose, on the contrary, that G^{*} is a parametric representation of Γ_{ρ} such that

$$
\begin{equation*}
A\left(G^{*}\right)<A(G) \tag{4.13}
\end{equation*}
$$

G^{*} is derivable from G by a parameter transformation on Γ_{ρ}; let $G^{(m)^{*}}$ be the representation of $\Gamma_{\rho}^{(m)}$ derived from $G^{(m)}$ by the same parameter transformation. The quotient $\frac{I_{m}}{I}$ in (4.12) is evidently the ratio of the squares of corresponding chords of $\Gamma_{\rho}^{(m)}$ and Γ_{ρ}, and corresponding chords remain such after the same parameter transformation is effected on both contours. It follows that, in an obvious notation,

$$
\begin{equation*}
\frac{I_{m}^{*}}{I^{*}}=\frac{I_{m}}{I}<B \text { for } 0<|\theta-\varphi|<\alpha \tag{4.14}
\end{equation*}
$$

B and α being the same as in (4.12).
Now $A(G)$ being finite, so also is $A\left(G^{*}\right)$, and therefore

$$
\begin{equation*}
A_{\epsilon}\left(G^{*}\right)=\frac{1}{4 \pi} \iint_{T_{\epsilon}} I^{*} . \rho d \theta \cdot \rho d \varphi \tag{4.15}
\end{equation*}
$$

-where T_{ϵ} is the domain (θ, φ) where $|\theta-\varphi| \geqq \epsilon$-converges to the finite limit $A\left(G^{*}\right)$ for $\epsilon \longrightarrow 0$. It follows by (4.14) that

$$
\begin{equation*}
A_{\epsilon}\left(G^{(m) *}\right)=\frac{1}{4 \pi} \iint_{T_{\epsilon}} I_{m}^{*} \cdot \rho d \theta \cdot \rho d \varphi \tag{4.16}
\end{equation*}
$$

converges uniformly to $A\left(G^{(m)^{*}}\right)$ for $\epsilon \longrightarrow 0$.
Now since I_{m}^{*} stays uniformly bounded on T_{ϵ} in θ, φ and m, in fact

$$
I_{m}^{*} \leqq \frac{4 n R^{2}}{4 \rho^{2} \sin ^{2} \frac{\epsilon}{2}}
$$

and furthermore

$$
\lim _{m \rightarrow \infty} I_{m}^{*}=I^{*}
$$

we have

$$
\lim _{m \rightarrow \infty} A_{\epsilon}\left(G^{(m)^{*}}\right)=A_{\epsilon}\left(G^{*}\right) ;
$$

hence

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lim _{m \rightarrow \infty} A_{\epsilon}\left(G^{(m)^{*}}\right)=\lim _{\epsilon \rightarrow 0} A_{\epsilon}\left(G^{*}\right) \tag{4.17}
\end{equation*}
$$

On account of the uniformity of approach of $A_{\epsilon}\left(G^{(m)^{*}}\right)$ to $A\left(G^{(m)^{*}}\right)$ when $\epsilon \longrightarrow 0$, it is permissible by a well-known mode of reasoning to interchange the order of the limiting processes on the left of (4.17), and we find

$$
\begin{equation*}
\lim _{m \rightarrow \infty} A\left(G^{(m)^{*}}\right)=A\left(G^{*}\right) \tag{4.18}
\end{equation*}
$$

By combining the relations (4.11), (4.13) and (4.18), we see readily that for sufficiently large values of m

$$
\begin{equation*}
A\left(G^{(m)^{*}}\right)<A\left(G^{(m)}\right) \tag{4.19}
\end{equation*}
$$

but this contradicts the fact, proved in §3, that $A\left(G^{(m)}\right)$ is the minimum value of the A-functional for $\Gamma_{\rho}^{(m)}$, this being the same as the minimum area bounded by $\Gamma_{\rho}^{(m)}{ }^{3}$

From the fact, now proved, that $A(G)$ is the minimum value of the A-functional for the contour Γ_{ρ}, it follows by the relations between the A-functional and area ${ }^{3}$ that the area of $M_{\rho} \leqq$ that of any other continuous surface bounded by Γ_{ρ}.
5. Let now Γ^{\prime} denote an arbitrary continuous closed curve in the interior of M, the image of any Jordan curve C^{\prime} in the interior of the circular disc $|w|<1$. On account of the fact that the singular points of M, where

$$
\sum_{i=1}^{n}\left|F_{i}^{\prime}(w)\right|^{2}=0
$$

have no point of condensation in the interior of $|w|<1$, we can construct with the origin as center a circle C_{ρ} of radius $\rho<1$ having on its circumference no singular points and containing C^{\prime} in its interior.

Denote by M^{\prime} the region of M_{ρ} interior to Γ^{\prime}; if M^{\prime} is not the surface of least area bounded by Γ^{\prime}, let $M^{\prime *}$ be this surface, whose existence is assured by the writer's earlier paper. Then by replacing M^{\prime} by $M^{\prime *}$ we would have a surface bounded by Γ_{ρ} with an area less than that of M_{ρ}, which is contrary to the result stated at the end of $\S 4$.

[^0]
[^0]: 1 "Solution of the Problem of Plateau," Trans. Amer. Math. Soc., 33, No. 1 (Jan., 1931), pp. 263-321.
 ${ }^{2}$ Loc. cit., §27.
 ${ }^{3}$ For the relations between the A-functional and area see the cited paper, §§ 22-26.

